DocumentCode :
2266289
Title :
Subject-adaptive steady-state visual evoked potential detection for brain-computer interface
Author :
Chumerin, Nikolay ; Manyakov, Nikolay V. ; Combaz, Adrien ; Robben, Arne ; Van Vliet, Marijn ; Van Hulle, Marc M.
Author_Institution :
Lab. for Neurofysiology, K.U. Leuven, Leuven, Belgium
Volume :
1
fYear :
2011
fDate :
15-17 Sept. 2011
Firstpage :
369
Lastpage :
373
Abstract :
We report on the development of a four command Brain-Computer Interface (BCI) based on steady-state visual evoked potential (SSVEP) responses detected from human electroencephalograms (EEGs). The proposed system combines spatial filtering, feature extraction and selection, and a classifier. Two types of classifiers were compared: one based on equal treatment of all harmonics in all EEG channels and the second based on preliminary training resulting in a weighted treatment of the harmonics. Results from six healthy subjects are evaluated.
Keywords :
brain-computer interfaces; electroencephalography; feature extraction; medical signal processing; signal classification; spatial filters; visual evoked potentials; brain-computer interface; classifiers; electroencephalograms; feature extraction; feature selection; spatial filtering; subject-adaptive steady-state visual evoked potential detection; Decoding; Electroencephalography; Games; Harmonic analysis; Signal to noise ratio; Visualization; BCI; EEG; SSVEP; decoding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011 IEEE 6th International Conference on
Conference_Location :
Prague
Print_ISBN :
978-1-4577-1426-9
Type :
conf
DOI :
10.1109/IDAACS.2011.6072776
Filename :
6072776
Link To Document :
بازگشت