DocumentCode :
226702
Title :
Lattice computing (LC) meta-representation for pattern classification
Author :
Papakostas, George A. ; Kaburlasos, Vassilis G.
Author_Institution :
Dept. of Comput. & Inf. Eng., Eastern Macedonia & Thrace Inst. of Technol., Kavala, Greece
fYear :
2014
fDate :
6-11 July 2014
Firstpage :
39
Lastpage :
44
Abstract :
This paper compares two alternative feature data meta-representations using Intervals´ Numbers (INs) in the context of the Minimum Distance Classifier (MDC) model. The first IN meta-representation employs one IN per feature vector, whereas the second IN meta-representation employs one IN per feature per class. Comparative classification experiments with the standard minimum distance classifier (MDC) on two benchmark classification problems, regarding face/facial expression recognition, demonstrate the superiority of the aforementioned second IN meta-representation. This superiority is attributed to an IN´s capacity to represent discriminative, all-order data statistics in a population of features.
Keywords :
face recognition; image classification; image representation; IN meta-representation; IN per feature per class; IN per feature vector; LC meta-representation; MDC; MDC model; all-order data statistics; benchmark classification problems; face-facial expression recognition; feature data meta-representations; interval numbers; lattice computing; minimum distance classifier model; pattern classification; Lattices; Pattern classification; Prototypes; Sociology; Statistics; Support vector machine classification; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-2073-0
Type :
conf
DOI :
10.1109/FUZZ-IEEE.2014.6891674
Filename :
6891674
Link To Document :
بازگشت