DocumentCode :
2268970
Title :
Chaos control of LMSER principal component analysis learning algorithm
Author :
Zuo, Lin ; Yi, Zhang ; Lv, Jiancheng
Author_Institution :
Sch. of Comput. Sci. & Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
fYear :
2010
fDate :
28-30 July 2010
Firstpage :
470
Lastpage :
474
Abstract :
LMSER (least mean square error reconstruction) PCA (principal component analysis) algorithm is a learning algorithm which is generally used to extract principal components of data. However, the algorithm can produce complicated dynamical behavior under certain conditions, such as the periodic oscillation, bifurcation and chaos. This paper introduces the chaos control of LMSER PCA, and the stability transformation method (STM) of chaos feedback control is specifically applied to the convergence control of LMSER PCA. Time series diagrames, Lyapunov exponent of discrete dynamical system of PCA illustrate that the desired fixed points of iterative map of LMSER PCA can be captured, and the chaotic behavior of LMSER PCA can be controlled.
Keywords :
Lyapunov methods; chaos; feedback; least mean squares methods; principal component analysis; stability; LMSER; Lyapunov exponent; PCA; chaos feedback control; least mean square error reconstruction; principal component analysis; stability transformation method; time series; Heuristic algorithms; Principal component analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, Circuits and Systems (ICCCAS), 2010 International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4244-8224-5
Type :
conf
DOI :
10.1109/ICCCAS.2010.5581951
Filename :
5581951
Link To Document :
بازگشت