Title :
A generalised Hadamard transform
Author_Institution :
RMIT Univ., Melbourne, Vic.
Abstract :
A generalised Hadamard transform for multiphase or multilevel signals is introduced, which includes the Fourier, generalised, discrete Fourier, Walsh-Hadamard and reverse jacket transforms. The jacket construction is formalised and shown to admit a tensor product decomposition. Primary matrices under this decomposition are identified. New examples of primary jacket matrices of orders 8 and 12 are presented
Keywords :
Hadamard transforms; discrete Fourier transforms; matrix algebra; signal processing; tensors; Walsh-Hadamard transform; discrete Fourier transform; generalised Hadamard transform; jacket matrices; multilevel signals; multiphase signals; reverse jacket transforms; tensor product decomposition; Australia; Discrete Fourier transforms; Discrete transforms; Error correction; Error correction codes; Fast Fourier transforms; Fourier transforms; Mathematics; Matrix decomposition; Tensile stress;
Conference_Titel :
Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on
Conference_Location :
Adelaide, SA
Print_ISBN :
0-7803-9151-9
DOI :
10.1109/ISIT.2005.1523490