Title :
The ANFIS handover trigger scheme: The Long Term Evolution (LTE) perspective
Author :
Kwong, C.F. ; Chuah, Teong Chee ; Tan, S.W.
Author_Institution :
Fac. of Sci., Technol., Eng. & Math., INTI Int. Univ., Nilai, Malaysia
Abstract :
With the need for better mobility management strategy to manage increasing demand on efficient data delivery to the user, the Long Term Evolution (LTE) has introduced self-organizing networks (SONs) in order to provide autonomous control over the management of the network. It is important to have a "self-manage" element in the system to provide a "quick-fix" and thus reduce the need of constant human participation in the optimization process of the LTE\´s mobility management. The existing handover triggering scheme for LTE is not flexible enough to introduce new performance metrics such as user equipment (UE) speed, network jitter or even cell loading. Such requirements for flexibility can only be fulfilled by using flexible tools such as fuzzy logic schemes with adaptive capability to cope with the changes of the fast paced mobile environment. This paper will introduce the use of the adaptive neuro-fuzzy inference system (ANFIS) to provide not only flexibility to LTE for initial deployment, but also the adaptive capability to optimize the efficiency of the handover algorithm with minimal human interference.
Keywords :
Long Term Evolution; fuzzy neural nets; fuzzy reasoning; mobility management (mobile radio); self-organising feature maps; telecommunication computing; ANFIS handover trigger scheme; LTE; Long Term Evolution; adaptive neuro-fuzzy inference system; autonomous control; handover algorithm efficiency; mobility management; network management; self-organizing networks; Fuzzy logic; Handover; Long Term Evolution; Measurement; Quality of service; Training;
Conference_Titel :
Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-2073-0
DOI :
10.1109/FUZZ-IEEE.2014.6891808