• DocumentCode
    227076
  • Title

    Genetic fuzzy classifier with fuzzy rough sets for imprecise data

  • Author

    Starczewski, Janusz T. ; Nowicki, Robert K. ; Nowak, Bartosz A.

  • Author_Institution
    Inst. of Comput. Intell., Czestochowa Univ. of Technol., Czestochowa, Poland
  • fYear
    2014
  • fDate
    6-11 July 2014
  • Firstpage
    1382
  • Lastpage
    1389
  • Abstract
    The main problem addressed in this paper is to handle adequately imprecision of input data by means of a combination of fuzzy methods with the rough set theory. We will make use of fuzzy rough sets derived as rough approximations of fuzzy antecedent sets by non-singleton fuzzy premise sets in a fuzzy classifier. Adaptation of the parameters of this system will be done by the standard genetic algorithm.
  • Keywords
    approximation theory; fuzzy set theory; genetic algorithms; pattern classification; rough set theory; fuzzy antecedent sets; fuzzy method; fuzzy rough set theory; genetic fuzzy classifier; input data imprecision handling; nonsingleton fuzzy premise sets; rough approximations; standard genetic algorithm; Approximation methods; Equations; Fuzzy logic; Fuzzy sets; Fuzzy systems; Optimization; Rough sets;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on
  • Conference_Location
    Beijing
  • Print_ISBN
    978-1-4799-2073-0
  • Type

    conf

  • DOI
    10.1109/FUZZ-IEEE.2014.6891857
  • Filename
    6891857