DocumentCode :
2274575
Title :
Matrix construction using cyclic shifts of a column
Author :
Tirkel, Andrew Z. ; Hall, Tom E.
Author_Institution :
Sch. of Math. Sci., Monash Univ., Clayton, Vic.
fYear :
2005
fDate :
4-9 Sept. 2005
Firstpage :
2050
Lastpage :
2054
Abstract :
This paper describes the synthesis of matrices with good correlation, from cyclic shifts of pseudonoise columns. Optimum matrices result whenever the shift sequence satisfies the constant difference property. Known shift sequences with the constant (or almost constant) difference property are: quadratic (polynomial) and reciprocal shift modulo prime, exponential shift, Legendre shift, Zech logarithm shift, and the shift sequences of some m-arrays. We use these shift sequences to produce arrays for watermarking of digital images. Matrices can also be unfolded into long sequences by diagonal unfolding (with no deterioration in correlation) or row-by-row unfolding, with some degradation in correlation
Keywords :
binary sequences; correlation methods; image coding; matrix algebra; watermarking; Legendre shift; Zech logarithm shift; autocorrelation; cross correlation; cyclic shifts; digital images; exponential shift; matrix construction; pseudonoise columns; reciprocal shift modulo prime; shift sequences; watermarking; Australia; Autocorrelation; Degradation; Digital images; Polynomials; Radar applications; Radar imaging; Sonar applications; Spread spectrum radar; Watermarking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2005. ISIT 2005. Proceedings. International Symposium on
Conference_Location :
Adelaide, SA
Print_ISBN :
0-7803-9151-9
Type :
conf
DOI :
10.1109/ISIT.2005.1523706
Filename :
1523706
Link To Document :
بازگشت