DocumentCode :
2274713
Title :
A fuzzy classifier that uses both crisp samples and linguistic knowledge
Author :
Wei, Wen ; Mendel, Jerry M.
Author_Institution :
Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA
fYear :
1994
fDate :
26-29 Jun 1994
Firstpage :
792
Abstract :
We propose a general structure for a classifier that uses fuzzy inference techniques. This structure leads to a variety of fuzzy logic classifiers that are capable of combining numerical data and linguistic knowledge in a unified framework. Under certain conditions the fuzzy logic classifier reduces to the Bayes minimum error classifier. Our examples show that, when linguistic information is available, the fuzzy classifiers can perform better than probabilistic classifiers that do not use the linguistic information
Keywords :
Bayes methods; fuzzy logic; fuzzy set theory; linguistics; pattern classification; uncertainty handling; Bayes minimum error classifier; crisp samples; fuzzy classifier; fuzzy inference techniques.; fuzzy logic classifiers; linguistic knowledge; numerical data; unified framework; Engines; Fuzzy logic; Fuzzy reasoning; Fuzzy sets; Fuzzy systems; Image processing; Knowledge management; Prototypes; Signal processing; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the Third IEEE Conference on
Conference_Location :
Orlando, FL
Print_ISBN :
0-7803-1896-X
Type :
conf
DOI :
10.1109/FUZZY.1994.343836
Filename :
343836
Link To Document :
بازگشت