DocumentCode :
2275342
Title :
Modifications of growth of strained silicon and dopant activation in silicon by cryogenic ion implantation and recrystallization annealing
Author :
Itokawa, Hiroshi ; Berliner, N.C. ; Teehan, S. ; Wall, Dmitri Robert ; Wahl, J.A. ; EunHa Kim ; Li, Jie ; Demarest, J.J. ; Ronsheim, P. ; Paruchuri, V.
Author_Institution :
Toshiba Corp., Semicond. & Storage Products Co., Japan
fYear :
2012
fDate :
14-15 May 2012
Firstpage :
210
Lastpage :
215
Abstract :
Formation of heavy C and/or P doping Si alloy with a strain and/or low resistivity in FinFET S/D having only {110} plane on fin sidewall poses a challenge because, if the CVD selective epitaxy typically used in recent S/D process integration is employed, it is extremely difficult to grow heavily doped Si alloys with defect-free microstructure on {110} crystallographic plane. We propose the combination of cryogenic ion-implant amorphization followed by nonmelt laser annealing regrowth for both strained C-incorporated Si solid-phase epitaxy and improvement of P-activation in heavily P-doped Si alloy epitaxially grown film, while annihilating defects. In this paper, the diffusion and the activation of C atoms and P atoms in Si with C additive are investigated for different nonmelt laser annealing conditions. Additionally, the influence of cryogenic implantation of Si+ into amorphized P-doped Si epitaxial layer followed by nonmelt laser annealing recystallization on the diffusion and activation of P atoms in Si is discussed.
Keywords :
MOSFET; carbon; chemical vapour deposition; cryogenics; crystal microstructure; diffusion; ion implantation; laser beam annealing; phosphorus; recrystallisation annealing; semiconductor doping; semiconductor epitaxial layers; silicon; silicon alloys; solid phase epitaxial growth; CVD selective epitaxy; FinFET S/D; P-activation; S/D process integration; Si:C; Si:P; annihilating defects; cryogenic implantation; cryogenic ion implantation; cryogenic ion-implant amorphization; crystallographic plane; defect-free microstructure; diffusion; dopant activation; epitaxial layer; epitaxially grown film; fin sidewall; heavily doped silicon alloys; nonmelt laser annealing conditions; nonmelt laser annealing recystallization; nonmelt laser annealing regrowth; recrystallization annealing; solid-phase epitaxy; strained silicon; Annealing; Atom lasers; Atomic beams; Chemical lasers; Silicon; Solid lasers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Junction Technology (IWJT), 2012 12th International Workshop on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4673-1258-5
Electronic_ISBN :
978-1-4673-1256-1
Type :
conf
DOI :
10.1109/IWJT.2012.6212843
Filename :
6212843
Link To Document :
بازگشت