• DocumentCode
    2280025
  • Title

    Learning based decoding approach for improved Wyner-Ziv video coding

  • Author

    Brites, Catarina ; Ascenso, João ; Pereira, Fernando

  • Author_Institution
    Inst. de Telecomun., Inst. Super. Tecnico, Lisbon, Portugal
  • fYear
    2012
  • fDate
    7-9 May 2012
  • Firstpage
    165
  • Lastpage
    168
  • Abstract
    Wyner-Ziv (WZ) video coding compression efficiency depends critically both on the side information (SI) quality and the correlation noise model (CNM) accuracy. In this context, this paper proposes a learning based decoding approach for transform domain WZ video coding, notably in the context of the following techniques: i) fractional-pixel motion field learning to define the relevance of the SI block candidates, and ii) CNM parameter learning. Experimental results show the proposed learning approach brings consistent RD performance improvements, with coding gains up to 3.9 dB regarding the state-of-the-art DISCOVER WZ video codec for a GOP size of 8.
  • Keywords
    data compression; decoding; learning (artificial intelligence); video coding; CNM accuracy; CNM parameter learning; DISCOVER WZ video codec; GOP; RD performance; SI quality; WZ video coding; Wyner-Ziv video coding compression efficiency; correlation noise model; fractional-pixel motion field learning; learning based decoding approach; side information; Codecs; Decoding; Discrete cosine transforms; Encoding; Silicon; Vectors; Video coding;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Picture Coding Symposium (PCS), 2012
  • Conference_Location
    Krakow
  • Print_ISBN
    978-1-4577-2047-5
  • Electronic_ISBN
    978-1-4577-2048-2
  • Type

    conf

  • DOI
    10.1109/PCS.2012.6213312
  • Filename
    6213312