Title :
Parallel mining of association rules using a lattice based approach
Author_Institution :
Univ. of Technol., Kingston
Abstract :
The discovery of interesting patterns from database transactions is one of the major problems in knowledge discovery in database. One such interesting pattern is the discovery of association rules from these transactions. Parallel algorithms are required for the mining of association rules due to the very large databases used to store the transactions. In this paper we present a parallel algorithm for the mining of association rules. We implemented a parallel algorithm that used a lattice approach for mining association rules. The dynamic distributed rule mining (DDRM) is a lattice-based algorithm that partitions the lattice into sublattices to be assigned to processors for processing and identification of frequent itemsets. Experimental results show that DDRM utilizes the processors efficiently and performed better than the prefix-based algorithm that uses a static approach to assign classes to the processors. The DDRM algorithm scales well and shows good speedup.
Keywords :
data mining; parallel algorithms; very large databases; association rules; database transactions; dynamic distributed rule mining; frequent itemsets; knowledge discovery; lattice-based algorithm; parallel algorithms; parallel mining; very large databases; Association rules; Costs; Data mining; Itemsets; Lattices; Marketing and sales; Parallel algorithms; Partitioning algorithms; Space technology; Transaction databases;
Conference_Titel :
SoutheastCon, 2007. Proceedings. IEEE
Conference_Location :
Richmond, VA
Print_ISBN :
1-4244-1029-0
Electronic_ISBN :
1-4244-1029-0
DOI :
10.1109/SECON.2007.342981