• DocumentCode
    2283199
  • Title

    Parameter optimization for information retrieval with genetic algorithm

  • Author

    Lin, Chuan ; Ma, Shao-Ping ; Zhang, Min

  • Author_Institution
    Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China
  • Volume
    4
  • fYear
    2003
  • fDate
    5-8 Oct. 2003
  • Firstpage
    3822
  • Abstract
    In most of the modern information retrieval (IR) systems, such as Okapi system, there are a variety of parameters to be turned which are data-dependent and sensitive. Manual parameter setting with fixed experimental values is not always feasible and reliable in practical cases. Furthermore, the supervised learning approaches are not applicable for lacking of relevant information while retrieving. Therefore, an automatic unsupervised parameter learning mechanism is necessary and important. In this paper, a genetic algorithm (GA) based parameter optimization approach is proposed and experimented on Okapi system using large scale data sets of TREC11, TREC10 and TREC9 web track collections. It indicates that our algorithm is effective to adjust system parameters and improve the retrieval performance significantly.
  • Keywords
    genetic algorithms; information retrieval; unsupervised learning; Okapi system; TREC10; TREC11; TREC9; automatic unsupervised parameter learning; genetic algorithm; information retrieval; large scale data sets; parameter optimization; web track collections; Computer hacking; Computer science; Genetic algorithms; Information retrieval; Intelligent systems; Laboratories; Large-scale systems; Modems; Optical computing; Training data;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Systems, Man and Cybernetics, 2003. IEEE International Conference on
  • ISSN
    1062-922X
  • Print_ISBN
    0-7803-7952-7
  • Type

    conf

  • DOI
    10.1109/ICSMC.2003.1244484
  • Filename
    1244484