Title :
3D integration technology and reliability challenges
Author :
Lee, Kangwook ; Fukushima, Takafumi ; Tanaka, Tetsu ; Koyanagi, Mitsumasa
Author_Institution :
New Ind. Creation Hatchery Center (NICHe), Tohoku Univ., Sendai, Japan
Abstract :
Three-dimensional (3D) integration technologies including a new 3D heterogeneous integration of the super-chip are described. In addition, the reliability challenges such as the mechanical stress/strain and Cu contamination are discussed. Cu TSVs with the diameter of 20-μm induced the maximum compressive stress of ~1 GPa at the Si substrate adjacent to them after annealed at 300°C. Mechanical strain/stress and crystal defects were produced in extremely thin wafer of 10μm thickness not only during the thinning but also after the bonding using fine-pitch, high-density metal bump. The influences of Cu contamination from the back surface of the thinned wafer and Cu TSVs on device reliability were evaluated by C-t analysis. The C-t curves of MOS capacitors formed in the thinned wafer without IG layer were seriously degraded after annealed at 200°C. The DP stress-relief EG layer at the backside of the thinned wafer exhibited good Cu retardation performance. The C-t curves of the MOS trench capacitor with 10-nm thick Ta barrier layer in Cu TSV were severely degraded after the initial annealing at 300°C for 5min. The degraded C-t curve indicates that the generation lifetime of minority carrier is significantly reduced by Cu contamination.
Keywords :
MOS capacitors; annealing; bonding processes; compressive strength; copper; crystal defects; fine-pitch technology; integrated circuit reliability; stress analysis; surface contamination; tantalum; three-dimensional integrated circuits; Cu; size 20 mum; temperature 300 C; time 5 min; Bonding; Contamination; Large scale integration; Silicon; Stress; Three dimensional displays; Through-silicon vias; 3D-LSI; Cu contamination; TSV; mechanical stress; microbump; minority carrier lifetime;
Conference_Titel :
Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 2011 IEEE
Conference_Location :
Hanzhou
Print_ISBN :
978-1-4673-2288-1
Electronic_ISBN :
2151-1225
DOI :
10.1109/EDAPS.2011.6213770