DocumentCode :
2288338
Title :
Predictive performance for the detection of underfitting in density estimation
Author :
Sardo, Lucia ; Kittler, Josef
Author_Institution :
Sch. of Electron. Eng. & Inf. Technol & Math., Surrey Univ., Guildford, UK
fYear :
1997
fDate :
7-9 Jul 1997
Firstpage :
24
Lastpage :
29
Abstract :
A methodology for model selection and validation is presented. The technique is applied to probability density estimation using Radial Basis Function (RBF) Neural Network. A model is assumed to have a good-fit, if it is able to predict the data. We present a procedure to test if the prediction of the model is calibrated, i.e. if the predicted data frequencies match the empirical data frequencies. Some experimental results show the benefits of such an approach
Keywords :
feedforward neural nets; Radial Basis Function; density estimation; model selection; prediction; probability density estimation; underfitting;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Artificial Neural Networks, Fifth International Conference on (Conf. Publ. No. 440)
Conference_Location :
Cambridge
ISSN :
0537-9989
Print_ISBN :
0-85296-690-3
Type :
conf
DOI :
10.1049/cp:19970696
Filename :
607487
Link To Document :
بازگشت