Title :
Hierarchical models for data visualization
Author :
Tipping, Michael E. ; Bishop, Christopher M.
Author_Institution :
Neural Comput. Res. Group, Aston Univ., Birmingham, UK
Abstract :
Visualization has proven to be a powerful and widely-applicable tool for the analysis and interpretation of data. Most visualization algorithms aim to find a projection from the data space down to a two-dimensional visualization space. However, for complex data sets living in a high-dimensional space it is unlikely that a single two-dimensional projection can reveal all of the interesting structure. We therefore introduce a hierarchical visualization algorithm which allows the complete data set to be visualized at the top level, with clusters and sub-clusters of data points visualized at deeper levels. The algorithm is based on a hierarchical mixture of latent variable models, whose parameters are estimated using the expectation-maximisation algorithm. We demonstrate the principle of the approach first on a toy data set, and then apply the algorithm to the visualization of a synthetic data set in 12 dimensions obtained from a simulation of multi-phase flows in oil pipelines
Keywords :
data visualisation; data interpretation; data space; data visualization; expectation-maximisation algorithm; hierarchical mixture; hierarchical models; high-dimensional space; latent variable models; multi-phase flows;
Conference_Titel :
Artificial Neural Networks, Fifth International Conference on (Conf. Publ. No. 440)
Conference_Location :
Cambridge
Print_ISBN :
0-85296-690-3
DOI :
10.1049/cp:19970704