DocumentCode :
228894
Title :
A psychographic framework for online user identification
Author :
Adeyemi, Ikuesan R. ; Abd Razak, Shukor ; Salleh, Mazleena
Author_Institution :
Inf. Assurance & Security Res. Group, Univ. Teknol. Malaysia, Skudai, Malaysia
fYear :
2014
fDate :
26-27 Aug. 2014
Firstpage :
198
Lastpage :
203
Abstract :
The borderline separating users on the Internet is limited to the classical object-system identifiers such as users-login-ID, and network parameters, which is assumed to belong to a benign user. These assumptions provide subtle platform for malicious action in addition to exploitation of the vulnerability in online anonymity. The study proposes a human-system identifier framework based on the integration of psychosocial attributes of human into Internet traffic classification process, such that sufficient unique psychographics demography of users can be extracted. Such user psychographic characterization can be complementary method in user identification process. The implication of this paradigm can be adapted for insider investigation process, online transaction authentication process, e-commerce modeling. Further, it finds relevance in network management, especially in a mono-demographical culture.
Keywords :
Internet; human computer interaction; security of data; Internet traffic classification process; human psychosocial attributes; human-system identifier framework; online anonymity; online user identification; psychographic framework; user psychographic demography; Biometrics (access control); Computational modeling; Fingerprint recognition; Internet; Object recognition; Telecommunication traffic; human-system identifiers; network traffic classification; psychographic framework; psychosocial-attributes; user-identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biometrics and Security Technologies (ISBAST), 2014 International Symposium on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4799-6443-7
Type :
conf
DOI :
10.1109/ISBAST.2014.7013121
Filename :
7013121
Link To Document :
بازگشت