Title : 
Gradient-free maximum likelihood parameter estimation with particle filters
         
        
            Author : 
Poyiadjis, George ; Singh, Sumeetpal S. ; Doucet, Arnaud
         
        
            Author_Institution : 
Dept. of Eng., Cambridge Univ.
         
        
        
        
            Abstract : 
In this paper we address the problem of on-line estimation of unknown static parameters in non-linear non-Gaussian state-space models. We consider a particle filtering method and employ two gradient-free Stochastic approximation (SA) methods to maximize recursively the likelihood function, the finite difference SA and Spall´s simultaneous perturbation SA. We demonstrate how these algorithms can generate maximum likelihood estimates in a simple and computationally efficient manner. The performance of the proposed algorithms is assessed through simulation
         
        
            Keywords : 
approximation theory; finite difference methods; maximum likelihood estimation; particle filtering (numerical methods); state-space methods; stochastic processes; Spall simultaneous perturbation; finite difference; gradient-free Stochastic approximation; gradient-free maximum likelihood parameter estimation; likelihood function; nonlinear nonGaussian state-space models; online estimation; particle filtering method; particle filters; unknown static parameters; Approximation algorithms; Computational modeling; Filtering algorithms; Finite difference methods; Maximum likelihood estimation; Parameter estimation; Particle filters; Recursive estimation; State estimation; Stochastic processes;
         
        
        
        
            Conference_Titel : 
American Control Conference, 2006
         
        
            Conference_Location : 
Minneapolis, MN
         
        
            Print_ISBN : 
1-4244-0209-3
         
        
            Electronic_ISBN : 
1-4244-0209-3
         
        
        
            DOI : 
10.1109/ACC.2006.1657187