• DocumentCode
    2289488
  • Title

    Detection driven adaptive multi-cue integration for multiple human tracking

  • Author

    Yang, Ming ; Lv, Fengjun ; Xu, Wei ; Gong, Yihong

  • Author_Institution
    NEC Laboratories America, Inc., 10080 North Wolfe Road, SW-350, Cupertino, CA 95014, USA
  • fYear
    2009
  • fDate
    Sept. 29 2009-Oct. 2 2009
  • Firstpage
    1554
  • Lastpage
    1561
  • Abstract
    In video surveillance scenarios, appearances of both human and their nearby scenes may experience large variations due to scale and view angle changes, partial occlusions, or interactions of a crowd. These challenges may weaken the effectiveness of a dedicated target observation model even based on multiple cues, which demands for an agile framework to adjust target observation models dynamically to maintain their discriminative power. Towards this end, we propose a new adaptive way to integrate multi-cue in tracking multiple human driven by human detections. Given a human detection can be reliably associated with an existing trajectory, we adapt the way how to combine specifically devised models based on different cues in this tracker so as to enhance the discriminative power of the integrated observation model in its local neighborhood. This is achieved by solving a regression problem efficiently. Specifically, we employ 3 observation models for a single person tracker based on color models of part of torso regions, an elliptical head model, and bags of local features, respectively. Extensive experiments on 3 challenging surveillance datasets demonstrate long-term reliable tracking performance of this method.
  • Keywords
    Detectors; Humans; Laboratories; Layout; National electric code; Object detection; Robustness; Surveillance; Target tracking; Torso;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision, 2009 IEEE 12th International Conference on
  • Conference_Location
    Kyoto
  • ISSN
    1550-5499
  • Print_ISBN
    978-1-4244-4420-5
  • Electronic_ISBN
    1550-5499
  • Type

    conf

  • DOI
    10.1109/ICCV.2009.5459252
  • Filename
    5459252