DocumentCode :
2293617
Title :
Image restoration using online photo collections
Author :
Dale, Kevin ; Johnson, Micah K. ; Sunkavalli, Kalyan ; Matusik, Wojciech ; Pfister, Hanspeter
Author_Institution :
Harvard Univ., Cambridge, MA, USA
fYear :
2009
fDate :
Sept. 29 2009-Oct. 2 2009
Firstpage :
2217
Lastpage :
2224
Abstract :
We present an image restoration method that leverages a large database of images gathered from the web. Given an input image, we execute an efficient visual search to find the closest images in the database; these images define the input´s visual context. We use the visual context as an image-specific prior and show its value in a variety of image restoration operations, including white balance correction, exposure correction, and contrast enhancement. We evaluate our approach using a database of 1 million images downloaded from Flickr and demonstrate the effect of database size on performance. Our results show that priors based on the visual context consistently out-perform generic or even domain-specific priors for these operations.
Keywords :
image restoration; visual databases; Flickr; contrast enhancement; exposure correction; image restoration; online photo collection; visual context; white balance correction; Cameras; Digital photography; Graphics; Gray-scale; Image databases; Image restoration; Image segmentation; Nearest neighbor searches; Robustness; Visual databases;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2009 IEEE 12th International Conference on
Conference_Location :
Kyoto
ISSN :
1550-5499
Print_ISBN :
978-1-4244-4420-5
Electronic_ISBN :
1550-5499
Type :
conf
DOI :
10.1109/ICCV.2009.5459473
Filename :
5459473
Link To Document :
بازگشت