DocumentCode :
2295238
Title :
Support vector machine and neural network united system for NC machine tool thermal error modeling
Author :
Lin, Weiqing ; Fu, Jianzhong
Author_Institution :
Dept. of Mech. Eng., Fujian Agric. & Forestry Univ., Fuzhou, China
Volume :
8
fYear :
2010
fDate :
10-12 Aug. 2010
Firstpage :
4305
Lastpage :
4309
Abstract :
In order to realize modeling and predicting for the thermal error of numerical control (NC) machine tool, a new united prediction model is introduced. The united prediction model combines the advantages of support vector machine (SVM) and neural network (NN) theory to show the excellent capability. The prediction precision of the hybrid prediction model for machine tool thermal errors is the highest among three kinds of models. The testing results show that the precision of the united prediction model is 0.5μm. The mean absolute percentage error (MAPE) of prediction model is 1.95%, outperforms any one of the two single prediction methods. Therefore, united predictive model can highly improve machine tool´s processing precision. Using the predicted thermal error model, the thermal deformation can be compensated.
Keywords :
computerised numerical control; machine tools; neural nets; production engineering computing; support vector machines; thermal analysis; NC machine tool; hybrid prediction model; mean absolute percentage error; neural network; numerical control machine tool; prediction precision; support vector machine; thermal deformation; thermal error modeling; united prediction model; Artificial neural networks; Computer numerical control; Data models; Machine tools; Predictive models; Support vector machines; Temperature measurement; neural network; support vector machine; united model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation (ICNC), 2010 Sixth International Conference on
Conference_Location :
Yantai, Shandong
Print_ISBN :
978-1-4244-5958-2
Type :
conf
DOI :
10.1109/ICNC.2010.5583620
Filename :
5583620
Link To Document :
بازگشت