DocumentCode :
2296431
Title :
MPC for LPV systems with bounded parameter variation using ellipsoidal set prediction
Author :
Suzukia, Hiromi ; Sugie, Toshiharu
Author_Institution :
Dept. of Syst. Sci., Kyoto Univ., Uji
fYear :
2006
fDate :
14-16 June 2006
Abstract :
This paper proposes a new model predictive control (MPC) method for linear parameter varying (LPV) systems with bounded parameter variation subject to input constraints. We adopt closed-loop prediction and construct ellipsoidal sets to predict the future states with reasonable computer load. Then the information on the parameter variation bounds is exploited to improve the accuracy of the prediction. In addition, we give a new terminal condition to enlarge the stabilizable region. The feasibility of the MPC problem at the initial step ensures the stability of the closed-loop system. Finally, a simulation result illustrates the effectiveness of the method
Keywords :
closed loop systems; distributed parameter systems; linear systems; predictive control; set theory; stability; state estimation; bounded parameter variation; closed-loop prediction; closed-loop system; ellipsoidal set prediction; linear parameter varying systems; model predictive control; stability; Accuracy; Open loop systems; Optimal control; Prediction algorithms; Predictive control; Predictive models; Robustness; Sampling methods; Stability; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2006
Conference_Location :
Minneapolis, MN
Print_ISBN :
1-4244-0209-3
Electronic_ISBN :
1-4244-0209-3
Type :
conf
DOI :
10.1109/ACC.2006.1657557
Filename :
1657557
Link To Document :
بازگشت