DocumentCode :
2297191
Title :
Modeling text with generalizable Gaussian mixtures
Author :
Hansen, Lars ; Sigurdsson, Sigurdur ; Kolenda, Thomas ; Nielsen, Finn Årup ; Kjems, Ulrik ; Larsen, Jan
Author_Institution :
Dept. of Math. Modelling, Tech. Univ. Denmark, Lyngby, Denmark
Volume :
6
fYear :
2000
fDate :
2000
Firstpage :
3494
Abstract :
We apply and discuss generalizable Gaussian mixture (GGM) models for text mining. The model automatically adapts model complexity for a given text representation. We show that the generalizability of these models depends on the dimensionality of the representation and the sample size. We discuss the relation between supervised and unsupervised learning in the test data. Finally, we implement a novelty detector based on the density model
Keywords :
Gaussian processes; computational complexity; information retrieval; pattern recognition; unsupervised learning; Web browser; Web visualization; density model based detector; generalized Gaussian mixtures; information retrieval; model complexity; pattern recognition; representation dimension; sample size; supervised learning; test data; test modeling; text mining; text representation; unsupervised learning; Cost function; Detectors; Feature extraction; Histograms; Information retrieval; Large scale integration; Mathematical model; Pattern recognition; Statistics; Supervised learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.860154
Filename :
860154
Link To Document :
بازگشت