DocumentCode :
2298388
Title :
Triple Representation Theorem for Homogeneous Effect Algebras
Author :
Niederle, Josef ; Paseka, Jan
Author_Institution :
Dept. of Math. & Stat., Masaryk Univ., Brno, Czech Republic
fYear :
2012
fDate :
14-16 May 2012
Firstpage :
337
Lastpage :
342
Abstract :
The aim of our paper is to prove the Triple Representation Theorem, which was established by Jenca in the setting of complete lattice effect algebras, for a special class of homogeneous effect algebras, namely TRT-effect algebras. This class includes complete lattice effect algebras, sharply dominating Archimedean atomic lattice effect algebras and homogeneous ortho complete effect algebras.
Keywords :
algebra; Archimedean atomic lattice effect algebras; TRT-effect algebras; homogeneous effect algebras; homogeneous ortho complete effect algebras; triple representation theorem; Algebra; Educational institutions; Electronic mail; Hilbert space; Lattices; Quantum mechanics; Homogeneous effect algebra; MV-algebra; TRT-effect algebra; atom; block; center; lattice effect algebra; meager element; orthocomplete effect algebra; sharp element; sharply dominating effect algebra;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic (ISMVL), 2012 42nd IEEE International Symposium on
Conference_Location :
Victoria, BC
ISSN :
0195-623X
Print_ISBN :
978-1-4673-0908-0
Type :
conf
DOI :
10.1109/ISMVL.2012.27
Filename :
6214831
Link To Document :
بازگشت