Title :
Phonem-based isolated Turkish word recognition with subspace classifier
Author :
Keser, Serkan ; Edizkan, Rifat
Abstract :
In this study, phoneme-based isolated Turkish word recognition with Common Vector Approach (CVA) has been performed. CVA has been used to classify phonemes. The phoneme sequence obtained from the classification is decoded into the word using redundant hash addressing (RHA). The phoneme-based speech recognition is more suitable than the word-based speech recognition for implementing applications that use different words in their dictionaries. For that reason, in this study the CVA is evaluated to see whether it could be used in phoneme-based word recognition or not. In the experimental study we obtained the word recognition rates 70-80% from randomly selected words in METU database. It might be possible to obtain higher recognition rates by improving the CVA and by using different word decoding techniques.
Keywords :
decoding; natural languages; signal classification; speech coding; speech recognition; common vector approach; decoding technique; phonem-based isolated Turkish word recognition; redundant hash addressing; subspace classifier; word-based speech recognition; Art; Databases; Decoding; Dictionaries; Hidden Markov models; Neural networks; Robots; Speech recognition;
Conference_Titel :
Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th
Conference_Location :
Antalya
Print_ISBN :
978-1-4244-4435-9
Electronic_ISBN :
978-1-4244-4436-6
DOI :
10.1109/SIU.2009.5136340