DocumentCode :
2304021
Title :
Fault-tolerant ring embedding in faulty arrangement graphs
Author :
Sun-Yuan Hsieh ; Gen-Huey Chen
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei
fYear :
1997
fDate :
10-13 Dec 1997
Firstpage :
744
Lastpage :
749
Abstract :
The arrangement graph An,k, which is a generalization of the star graph (n-t=1), presents more flexibility than the star graph in adjusting the major design parameters: number of nodes, degree, and diameter. Previously the arrangement graph has proven hamiltonian. In this paper we further show that the arrangement graph remains hamiltonian even if it is faulty. Let |Fe| and |Fv| denote the numbers of edge faults and vertex faults, respectively. We show that An,k is hamiltonian when (1) (k=2 and n-k⩾4, or k⩾3 and n-k⩾4+[k/2]), and |Fe|⩽k(n-k-2)-1, or (2) k⩾2, n-k⩾2+[k/2], and |F e|⩽k(n-k-3)-1, or (3) k⩾2, n-k⩾3, and |F3 |⩽k
Keywords :
fault tolerant computing; hypercube networks; performance evaluation; design parameters; edge faults; fault-tolerant ring embedding; faulty arrangement graphs; star graph; vertex faults; Computer science; Fault tolerance; Hypercubes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Systems, 1997. Proceedings., 1997 International Conference on
Conference_Location :
Seoul
Print_ISBN :
0-8186-8227-2
Type :
conf
DOI :
10.1109/ICPADS.1997.652625
Filename :
652625
Link To Document :
بازگشت