DocumentCode :
2304480
Title :
Pattern classification by a Gibbsian Kohonen neural network with an application to Arabic character recognition
Author :
Mezghani, N. ; Mitiche, A.
Author_Institution :
Centre de Rech. du CHUM, Lab. de Rech. en imagerie et orthopedie (LIO), Montreal, QC
fYear :
2008
fDate :
23-26 Nov. 2008
Firstpage :
1
Lastpage :
5
Abstract :
Recent studies have shown that the Gibbs density function can model complex patterns and that a constrained maximum entropy formulation affords a powerful means of estimating its parameters from pattern class data. The theory, developed in the context of learning a prior model of natural images, has been applied successfully to the synthesis of textures and shapes, and to pattern classification. The basic parameter estimation algorithm rests on gradient algorithm following the maximization under constraints of an entropy criterion. The purpose of this study is to investigate a Gibbsian Kohonen neural network, a Kohonen network which can learn these constrained maximum entropy Gibbs density parameters for pattern representation and classification. Experiments in classification of handwritten characters verify the validity and efficiency of the method.
Keywords :
character recognition; maximum entropy methods; neural nets; optimisation; parameter estimation; pattern classification; Arabic character recognition; Gibbs density function; Gibbsian Kohonen neural network; gradient algorithm; maximization; maximum entropy; natural images; parameter estimation; pattern class data; pattern classification; pattern representation; Character recognition; Density functional theory; Entropy; Neural networks; Parameter estimation; Pattern classification; Probability; Shape measurement; Statistical distributions; Training data; Gibbs density; Kohonen neural network; handwritten characters; parameter estimation; pattern classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing Theory, Tools and Applications, 2008. IPTA 2008. First Workshops on
Conference_Location :
Sousse
Print_ISBN :
978-1-4244-3321-6
Electronic_ISBN :
978-1-4244-3322-3
Type :
conf
DOI :
10.1109/IPTA.2008.4743747
Filename :
4743747
Link To Document :
بازگشت