Title :
An Inverse Eigenvalue Problem for a Special Kind of Matrices
Author :
Liu, Zhibing ; Chen, Baidi ; Wang, Kanmin
Author_Institution :
Coll. of Sci., Jiujiang Univ., Jiujiang, China
Abstract :
In this paper we study a kind of inverse eigen value problem for a special kind of real symmetric matrices: the real symmetric Arrow-plus-Jacobi matrices. That is, matrices which look like arrow matrices forward and Jacobi backward, from the (p,p)station, 1 ≤ p ≤ n. We give a necessary and sufficient condition for the existence of such two matrices. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix.
Keywords :
Jacobian matrices; eigenvalues and eigenfunctions; Jacobi backward; arrow matrices forward; inverse eigenvalue problem; symmetric arrow-plus-Jacobi matrices; Eigenvalues and eigenfunctions; Inverse problems; Jacobian matrices; Nonlinear control systems; Presses; Sufficient conditions; Symmetric matrices; Eigenvalue; Matrix inverse eigenvalue problem; Symmetric Arrow-plus-Jacobi matrix;
Conference_Titel :
Information and Computing (ICIC), 2011 Fourth International Conference on
Conference_Location :
Phuket Island
Print_ISBN :
978-1-61284-688-0
DOI :
10.1109/ICIC.2011.38