DocumentCode :
2306030
Title :
An efficient algorithm for mining complete share-frequent itemsets using BitTable and heuristics
Author :
Wapornanan, Chayanan Na ; Boonjing, Veera
Author_Institution :
Dept. of Math. & Comput. Sci., King Mongkut´´s Inst. of Technol. Ladkrabang, Bangkok, Thailand
Volume :
1
fYear :
2012
fDate :
15-17 July 2012
Firstpage :
96
Lastpage :
101
Abstract :
This paper proposes a new efficient algorithm for mining share-frequent itemsets from BitTable knowledge - extracted once from a transaction database. The knowledge contains sufficient information for such a mining task and provides efficient interactive access. The algorithm finds all share-frequent itemsets by level-wise generating complete promising candidates from a BitTable using heuristics and testing for desired solutions. Simulation results reveal that the proposed algorithm perform significantly better than ShFSM and DCG both runtime and a number of generated candidates.
Keywords :
data mining; interactive systems; BitTable knowledge; complete share-frequent itemset mining; heuristics algorithm; interactive access; mining task; transaction database; Abstracts; Itemsets; Testing; Association rules; Data mining; Knowledge discovery; Share-frequent itemsets;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics (ICMLC), 2012 International Conference on
Conference_Location :
Xian
ISSN :
2160-133X
Print_ISBN :
978-1-4673-1484-8
Type :
conf
DOI :
10.1109/ICMLC.2012.6358893
Filename :
6358893
Link To Document :
بازگشت