DocumentCode :
2308422
Title :
Comparing Smoothing Techniques on Fertility Data
Author :
Moguerza, Javier M. ; Olivares, Alberto ; Kostaki, Anastasia ; Psarakis, Stelios
Author_Institution :
Dept. of Stat. & Oper. Res., Univ. Rey Juan Carlos, Fuenlabrada, Spain
fYear :
2010
fDate :
8-13 Nov. 2010
Firstpage :
124
Lastpage :
128
Abstract :
This paper compares different smoothing techniques for graduating fertility rates. In particular we focus on some well-known parametric models, standard non-parametric statistical methods such as kernels and splines, and Support Vector Machines (SVM). In this work, we apply these techniques to empirical age-specific fertility rates from a variety of populations and time periods.
Keywords :
nonparametric statistics; social sciences computing; statistical analysis; support vector machines; age specific fertility rates; different smoothing; fertility data; parametric models; smoothing technique; standard nonparametric statistical methods; support vector machines; fertility data; smoothing techniques; splines; support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Artificial Intelligence (MICAI), 2010 Ninth Mexican International Conference on
Conference_Location :
Pachuca
Print_ISBN :
978-0-7695-4284-3
Type :
conf
DOI :
10.1109/MICAI.2010.15
Filename :
5699182
Link To Document :
بازگشت