DocumentCode :
2311434
Title :
Adaptive CFAR detection via Bayesian hierarchical model based parameter estimation
Author :
Chen, Biao ; Varshney, Pramod K. ; Michels, James H.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., NY, USA
Volume :
2
fYear :
2001
fDate :
4-7 Nov. 2001
Firstpage :
1396
Abstract :
Radar CFAR detection is addressed in this paper where the unknown noise/clutter statistics are modeled using a hierarchical structure. Considering the secondary data as a probability mixture due to the complex and heterogeneous background, parameter estimation is achieved using the empirical Bayesian approach. Unlike conventional cell averaging CFAR (and its variations) and order statistics CFAR, the new CFAR detection algorithm is less sensitive to the clutter edge location/duration. Performance evaluation is conducted via numerical simulation.
Keywords :
Bayes methods; adaptive estimation; adaptive radar; parameter estimation; probability; radar clutter; radar detection; Bayesian hierarchical model; adaptive CFAR detection; clutter edge location/duration; complex heterogeneous background; numerical simulation; parameter estimation; performance evaluation; probability mixture; radar detection; unknown noise/clutter statistics; Background noise; Bayesian methods; Exponential distribution; Jamming; Parameter estimation; Probability; Radar clutter; Radar detection; Statistics; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-7803-7147-X
Type :
conf
DOI :
10.1109/ACSSC.2001.987720
Filename :
987720
Link To Document :
بازگشت