DocumentCode :
2313094
Title :
Influence of trace geometry on the current crowding effect in ultra-fine pitch MicroBump
Author :
Chang, Y.W. ; Peng, H.Y. ; Yang, R.W. ; Chen, Chih ; Chang, T.C. ; Zhan, C.J. ; Juang, J.Y.
Author_Institution :
Dept. of Mater. Sci. & Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
fYear :
2010
fDate :
20-22 Oct. 2010
Firstpage :
1
Lastpage :
4
Abstract :
On one hand, with the rapid increase of integrated circuits (ICs) I/O number, the traditional package technique does not meet the need of pioneer development. On the other hand, three-dimensional integrated circuits (3-D ICs) become more and more popular to satisfy the multi-function chip development. One of the best solutions of these needs is the ultra-fine pitch micro-bumps. The micro-bumps can conduct the power and signals between chips in the stack and significantly shorten the distance between chips. However, the line-to-bump structure of micro-bump results in the serious current crowding near the entrance point of current flow. The current crowding effect, which makes the "REAL" resistance of micro-bump much higher than the theoretical one, is a phenomenon of non-uniform current density distribution on the interface between Al pad and solder joint. In this study, a finite elements analysis (FEA) method and a parametric method are applied to analyze the electrical behavior, current crowding, of ultra-fine pitch micro-bump. A series of models with different thick Al traces are built to observe the influence of trace geometry in the ultra-fine pitch micro-bump structure. The result of FEA shows that there is a significant correlation between the thickness of Al trace and the resistance of micro-bumps. The thicker the Al trace, the lower the bump resistance. Moreover, the crowding ratio (CR), a factor defined to indicate the level of current crowding, also decreases dramatically with the thicker Al trace. When the thickness of Al trace increase from 0.4 μM to 6.0 μM, the resistance of a single micro-bump decreases from 161.2 MΩ to 27.3 mil, and the CR decreases to a fourth of its initial value, too. Besides the FEA, a simplified numerical which is constructed by a micro-resistance network is proposed in this study to illustrate the relationship between the geometry of Al trace, the resistance of micro-bump, and CR. This numerical model sho- - ws that the bump resistance with a non-uniform current density distribution can be presented as (2RtaceRjoint)0.5. Furthermore, the CR equals to Rbump / Rjoint and can also be presented as (2Rtace / Rjoint)0.5. These results indicate the influence of trace geometry on bump resistance and CR, and it fit the FEA results well. With the Kelvin bump structure, experimental measurement of bump resistance is also performed to examine the credibility of the FEA results.
Keywords :
current density; finite element analysis; integrated circuit packaging; three-dimensional integrated circuits; 3D IC; FEA; Kelvin bump structure; bump resistance; crowding ratio; current crowding effect; electrical behavior; finite elements analysis; line-to-bump structure; microresistance network; multifunction chip development; nonuniform current density distribution; package technique; parametric method; three-dimensional integrated circuit; trace geometry; ultra-fine pitch microbump; Electrical resistance measurement; Finite element methods; Kelvin; Numerical models; Proximity effect; Resistance; Soldering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International
Conference_Location :
Taipei
ISSN :
2150-5934
Print_ISBN :
978-1-4244-9783-6
Electronic_ISBN :
2150-5934
Type :
conf
DOI :
10.1109/IMPACT.2010.5699605
Filename :
5699605
Link To Document :
بازگشت