DocumentCode :
2315942
Title :
Microcalcification detection in mammograms using interval type-2 fuzzy logic system with automatic membership function generation
Author :
Chumklin, Suraphon ; Auephanwiriyakul, Sansanee ; Theera-Umpon, Nipon
Author_Institution :
Dept. of Comput. Eng., Chiang Mai Univ., Chiang Mai, Thailand
fYear :
2010
fDate :
18-23 July 2010
Firstpage :
1
Lastpage :
7
Abstract :
Breast cancer is an important deleterious disease. Mortality rate from this cancer is effectively high and rapidly increasing. The detection at the earlier state can help to reduce the mortality rate. In this paper, we apply the interval type-2 fuzzy system with automatic membership function generation using the Possibilistic C-Means (PCM) clustering algorithm. We utilize four features, i.e., B-descriptor, D-descriptor, average intensity of the inside boundary, and intensity difference between the inside and the outside boundaries. We also compare the result with the result from the interval type-2 fuzzy logic system with automatic membership function generation using the Fuzzy C-Means (FCM) clustering algorithm. The interval type-2 fuzzy system with PCM membership functions generation yields the best result, i.e., 89.47% correct classification with only 6 false positives per image.
Keywords :
cancer; fuzzy logic; mammography; medical image processing; pattern clustering; FCM; PCM; automatic membership function generation; breast cancer; fuzzy c-means; interval type-2 fuzzy logic system; mammograms microcalcification detection; possibilistic c-means; Clustering algorithms; Fuzzy logic; Fuzzy systems; Phase change materials; Pixel; Pragmatics; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems (FUZZ), 2010 IEEE International Conference on
Conference_Location :
Barcelona
ISSN :
1098-7584
Print_ISBN :
978-1-4244-6919-2
Type :
conf
DOI :
10.1109/FUZZY.2010.5584896
Filename :
5584896
Link To Document :
بازگشت