Title :
RECONNECT: A NoC for polymorphic ASICs using a low overhead single cycle router
Author :
Nimmy, J. ; Ramesh Reddy, C. ; Varadarajan, Keshavan ; Alle, Mythri ; Fell, Alexander ; Nandy, S.K. ; Narayan, Ranjani
Author_Institution :
CAD Lab., Indian Inst. of Sci., Bangalore
Abstract :
A polymorphic ASIC is a runtime reconfigurable hardware substrate comprising compute and communication elements. It is a ldquofuture proofrdquo custom hardware solution for multiple applications and their derivatives in a domain. Interoperability between application derivatives at runtime is achieved through hardware reconfiguration. In this paper we present the design of a single cycle Network on Chip (NoC) router that is responsible for effecting runtime reconfiguration of the hardware substrate. The router design is optimized to avoid FIFO buffers at the input port and loop back at output crossbar. It provides virtual channels to emulate a non-blocking network and supports a simple X-Y relative addressing scheme to limit the control overhead to 9 bits per packet. The 8times8 honeycomb NoC (RECONNECT) implemented in 130 nm UMC CMOS standard cell library operates at 500 MHz and has a bisection bandwidth of 28.5 GBps. The network is characterized for random, self-similar and application specific traffic patterns that model the execution of multimedia and DSP kernels with varying network loads and virtual channels. Our implementation with 4 virtual channels has an average network latency of 24 clock cycles and throughput of 62.5% of the network capacity for random traffic. For application specific traffic the latency is 6 clock cycles and throughput is 87% of the network capacity.
Keywords :
CMOS integrated circuits; application specific integrated circuits; integrated circuit design; logic design; network routing; network topology; network-on-chip; CMOS standard cell library; DSP kernel; FIFO buffer; X-Y relative addressing scheme; honeycomb NoC; multimedia execution; nonblocking network emulation; polymorphic ASIC; random traffic pattern; runtime reconfigurable hardware substrate; single cycle network on chip router design; virtual channel; Application specific integrated circuits; Clocks; Delay; Design optimization; Hardware; Network-on-a-chip; Runtime; Telecommunication traffic; Throughput; Traffic control;
Conference_Titel :
Application-Specific Systems, Architectures and Processors, 2008. ASAP 2008. International Conference on
Conference_Location :
Leuven
Print_ISBN :
978-1-4244-1897-8
Electronic_ISBN :
2160-0511
DOI :
10.1109/ASAP.2008.4580187