DocumentCode :
2322095
Title :
Hierarchical MapReduce Programming Model and Scheduling Algorithms
Author :
Luo, Yuan ; Plale, Beth
Author_Institution :
Sch. of Inf. & Comput., Indiana Univ. Bloomington, Bloomington, IN, USA
fYear :
2012
fDate :
13-16 May 2012
Firstpage :
769
Lastpage :
774
Abstract :
We present a Hierarchical MapReduce framework that gathers computation resources from different clusters and runs MapReduce jobs across them. The applications implemented in this framework adopt the Map-Reduce-Global Reduce model where computations are expressed as three functions: Map, Reduce, and Global Reduce. Two scheduling algorithms are introduced: Compute Capacity Aware Scheduling for compute-intensive jobs and Data Location Aware Scheduling for data-intensive jobs. Experimental evaluations using a molecule binding prediction tool, Auto Dock, and grep demonstrate promising results for our framework.
Keywords :
parallel programming; scheduling; statistical analysis; AutoDock; MapReduce-GlobalReduce model; capacity aware scheduling; cluster; data intensive job; data location aware scheduling; hierarchical MapReduce programming model; molecule binding prediction tool; resource allocation; scheduling algorithm; Computational modeling; Distributed databases; Educational institutions; Programming; Scheduling; Scheduling algorithms; Cross Domain; Data Intensive; MapReduce; Multi-Cluster;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on
Conference_Location :
Ottawa, ON
Print_ISBN :
978-1-4673-1395-7
Type :
conf
DOI :
10.1109/CCGrid.2012.132
Filename :
6217509
Link To Document :
بازگشت