DocumentCode :
232311
Title :
Multi-angle based lively sclera biometrics at a distance
Author :
Das, Aruneema ; Pal, Umapada ; Ferrer Ballester, Miguel Angel ; Blumenstein, Michael
Author_Institution :
Inst. for Integrated & Intell. Syst., Griffith Univ., Brisbane, QLD, Australia
fYear :
2014
fDate :
9-12 Dec. 2014
Firstpage :
22
Lastpage :
29
Abstract :
This piece of work proposes a liveliness based sclera eye biometric, validation and recognition technique at a distance. The images in this work are acquired by a digital camera in the visible spectrum at varying distance of about 1 meter from the individual. Each individual during registration as well as validation is asked to look straight and move their eye ball up, left and right keeping their face straight to incorporate liveliness of the data. At first the image is divided vertically into two halves and the eyes are detected in each half of the face image that is captured, by locating the eye ball by a Circular Hough Transform. Then the eye image is cropped out automatically using the radius of the iris. Next a C-means-based segmentation is used for sclera segmentation followed by vessel enhancement by the adaptive histogram equalization and Haar filtering. The feature extraction was performed by patch-based Dense-LDP (Linear Directive Pattern). Furthermore each training image is used to form a bag of features, which is used to produce the training model. Each of the images of the different poses is combined at the feature level and the image level to obtain higher accuracy and to incorporate liveliness. The fusion that produces the best result is considered. Support Vector Machines (SVMs) are used for classification. Here images from 82 individuals (both left and right eye i.e. 164 different eyes) are used and an appreciable Equal Error Rate of 0.52% is achieved in this work.
Keywords :
Haar transforms; Hough transforms; biometrics (access control); eye; feature extraction; image classification; image filtering; image fusion; image registration; image segmentation; object detection; object recognition; support vector machines; C-means-based segmentation; Haar filtering; SVM; adaptive histogram equalization; bag of features; circular Hough transform; data liveliness; digital camera; distance 1 m; eye ball location; eye ball movement; eye detection; eye image cropping; face image; feature extraction; image classification; image division; image fusion; image pose; image registration; iris radius; linear directive pattern; liveliness based sclera eye biometric; multiangle based lively sclera biometrics; patch-based dense-LDP; sclera eye recognition; sclera eye validation; sclera segmentation; support vector machines; vessel enhancement; visible spectrum; Adaptive equalizers; Feature extraction; Histograms; Image segmentation; Iris recognition; Training; Adaptive Histogram Equalization; Bag of features; Biometric; Liveliness, of data: Eye movement: D-LDP; SVM; Sclera Vessels Patterns;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence in Biometrics and Identity Management (CIBIM), 2014 IEEE Symposium on
Conference_Location :
Orlando, FL
Type :
conf
DOI :
10.1109/CIBIM.2014.7015439
Filename :
7015439
Link To Document :
بازگشت