• DocumentCode
    2323398
  • Title

    Neural network approach towards pattern classification using fMRI activation maps

  • Author

    Suma, H.N. ; Murali, S.

  • Author_Institution
    B M S Coll. of Eng., Bangalore
  • fYear
    2008
  • fDate
    13-15 May 2008
  • Firstpage
    288
  • Lastpage
    293
  • Abstract
    The activity patterns in fMRI data represent execution of different physical and mental tasks. Each of these patterns is unique and located in specific location in the brain. The main aim of analyzing these datasets is to localize the areas of the brain that have been activated in a given experiment. The basic analysis involves carrying out a statistical test for activation at thousands of locations in the brain. In this paper an attempt is made to develop and train classifiers based on the subjectspsila fMRI sequences in order to predict the tasks performed. The fMRI data set is huge and also the data size for different tasks is dimensionally dissimilar. Dimensionality reduction of high dimensional data is useful for three general reasons; it reduces computational requirements for subsequent operations on the data, eliminates redundancies in the data, and, in cases where the feature data set dimensionality doesnpsilat match then a common dimension is to be arrived at with the available data. All three reasons apply here, and motivate the use of Principal Component Analysis (PCA), a standard method for creating uncorrelated variables from best-fitting linear combinations of the variables in the raw data. The depth information data is extracted using Statistical Parametric mapping (SPM). The templates comprising of principal components represent individual activity. These are then fed to the back propagation training algorithm. The trained network is capable of classifying the test pattern into the corresponding defined class.
  • Keywords
    backpropagation; biomedical MRI; medical image processing; pattern classification; principal component analysis; PCA; SPM; back propagation training algorithm; fMRI activation maps; fMRI sequences; functional MRI; neural network; pattern classification; principal component analysis; statistical parametric mapping; Brain; Data analysis; Data engineering; Decoding; Educational institutions; Neural networks; Pattern classification; Principal component analysis; Testing; Timing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer and Communication Engineering, 2008. ICCCE 2008. International Conference on
  • Conference_Location
    Kuala Lumpur
  • Print_ISBN
    978-1-4244-1691-2
  • Electronic_ISBN
    978-1-4244-1692-9
  • Type

    conf

  • DOI
    10.1109/ICCCE.2008.4580614
  • Filename
    4580614