DocumentCode :
2323969
Title :
Query Generation from Multiple Media Examples
Author :
Ren, Reede ; Jose, Joemon M.
Author_Institution :
Comput. Sci. Dept., Univ. of Glasgow, Glasgow
fYear :
2009
fDate :
3-5 June 2009
Firstpage :
138
Lastpage :
143
Abstract :
This paper exploits a media document representation called feature terms to generate a query from multiple media examples, e.g. images. A feature term denotes a continuous interval of a media feature dimension. This approach (1) helps feature accumulation from multiple examples; (2) enables the exploration of text-based retrieval models for multimedia retrieval. Three criteria, minimised chi2, minimised AC/DC and maximised entropy, are proposed to optimise feature term selection. Two ranking functions, KL divergence and BM25, are used for relevance estimation. Experiments on Corel photo collection and TRECVid 2006 collection show the effectiveness in image/video retrieval.
Keywords :
entropy; multimedia computing; query processing; BM25; Corel photo collection; KL divergence; TRECVid 2006 collection; feature term selection; image retrieval; maximised entropy; media document representation; minimised AC/DC entropy; minimised chi2 entropy; multimedia retrieval; query generation; ranking functions; relevance estimation; text-based retrieval models; video retrieval; Character generation; Employment; Entropy; Feature extraction; Fusion power generation; Image retrieval; Indexing; Information retrieval; Machine learning; Multimedia computing; aggregation model; feature term; multimedia retrieval; query generation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Content-Based Multimedia Indexing, 2009. CBMI '09. Seventh International Workshop on
Conference_Location :
Chania
Print_ISBN :
978-1-4244-4265-2
Electronic_ISBN :
978-0-7695-3662-0
Type :
conf
DOI :
10.1109/CBMI.2009.13
Filename :
5137831
Link To Document :
بازگشت