Title :
Ear recognition using features inspired by visual cortex and support vector machine technique
Author :
Yaqubi, Mahboubeh ; Faez, Karim ; Motamed, Sara
Author_Institution :
Dept. of Electr. & Comput. Eng., Islamic Azad Univ., Qazvin
Abstract :
Ear is a new class of relatively stable biometric that is invariant from childhood to early old age. In most cases techniques already working in other biometric fields, such as PCA are applied to ear. Eigen-ears provide high recognition rate only in closely controlled conditions. Indeed, even a slight amount of rotation can cause a significant drop in system performance and in unattended systems rotations occur very frequently. HMAX is a feature extraction method and this method is motivated by a quantitative model of visual cortex. Also, SVMs are classifiers which have demonstrated high generalization capabilities in many different tasks, including the object recognition problem. In this paper we combine these two techniques for the robust Ear verification problem. The USTB database is exploited to test our approach. Experimental results using the combination HMAX model and support vector machine (SVM) classifier (with kernel=1), obtains higher recognition rate than those obtained with HMAX model and k-nearest neighbors classifier in ear verification. In addition to, demonstrated that this method is rotate-and scale-invariant, and also, in experiment, it was found that, using of Gaussian filter in HMAX model in compared to using of Gabor filter, increases performance of ear recognition.
Keywords :
biometrics (access control); ear; feature extraction; image classification; support vector machines; USTB database; biometric field; ear recognition; feature extraction; object recognition problem; quantitative model; robust ear verification problem; support vector machine; unattended system rotation; visual cortex; Biometrics; Brain modeling; Ear; Feature extraction; Gabor filters; Object recognition; Principal component analysis; Support vector machine classification; Support vector machines; System performance;
Conference_Titel :
Computer and Communication Engineering, 2008. ICCCE 2008. International Conference on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4244-1691-2
Electronic_ISBN :
978-1-4244-1692-9
DOI :
10.1109/ICCCE.2008.4580660