DocumentCode :
2324630
Title :
On the decoding of convolutional codes using genetic algorithms
Author :
Berbia, Hassan ; Belkasmi, Mostafa ; Elbouanani, Fayssal ; Ayoub, Fouad
Author_Institution :
ENSIAS, Rabat
fYear :
2008
fDate :
13-15 May 2008
Firstpage :
667
Lastpage :
671
Abstract :
In this paper, we deal with decoding of convolutional codes using artificial intelligence techniques. A comparison of our decoder versus the Viterbi decoder in terms of performance and computing complexity is given. The simulation results show that the genetic algorithms based decoder (GAD) outperforms the Viterbi decoders. Furthermore the computing complexity of GAD is better for codes with large lengths. The good results obtained by GAD for systematic convolutional codes make it more attractive.
Keywords :
computational complexity; convolutional codes; data communication; decoding; digital communication; genetic algorithms; artificial intelligence; computing complexity; convolutional codes; data communication; decoding; digital communication; genetic algorithm based decoder; wireless communication; Artificial intelligence; Block codes; Computational modeling; Convolutional codes; Digital communication; Genetic algorithms; Genetic engineering; Iterative decoding; Turbo codes; Viterbi algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Communication Engineering, 2008. ICCCE 2008. International Conference on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4244-1691-2
Electronic_ISBN :
978-1-4244-1692-9
Type :
conf
DOI :
10.1109/ICCCE.2008.4580688
Filename :
4580688
Link To Document :
بازگشت