DocumentCode :
2324664
Title :
Late-time instability of the finite element time domain (FETD) method when using newmark time integration
Author :
Chilton, Ryan A. ; Lee, Razak
Author_Institution :
Electroscience Lab, Columbus
fYear :
2007
fDate :
9-15 June 2007
Firstpage :
5071
Lastpage :
5074
Abstract :
The FETD-Newmark method [1] is typically considered unconditionally stable because its amplification matrix A has all unitary eigenvalues regardless of timestep. Herein, it is shown that the amplification matrix lacks a linearly independent set of eigenvectors, and has a nondiagonal Jordan form which permits linear growth for gradient fields [2]. Knowledge of Jordan (A) will naturally lead to a correction scheme which removes the growing gradient term and stabilizes the algorithm for long-duration simulations (multiple millions of timesteps).
Keywords :
eigenvalues and eigenfunctions; finite element analysis; time-domain analysis; Newmark time integration; amplification matrix; eigenvalues; eigenvectors; finite element time domain method; Eigenvalues and eigenfunctions; Electrodynamics; Electrostatics; Finite element methods; Lattices; Lead compounds; Matrix decomposition; Partial differential equations; Testing; Time domain analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Antennas and Propagation Society International Symposium, 2007 IEEE
Conference_Location :
Honolulu, HI
Print_ISBN :
978-1-4244-0877-1
Electronic_ISBN :
978-1-4244-0878-8
Type :
conf
DOI :
10.1109/APS.2007.4396686
Filename :
4396686
Link To Document :
بازگشت