Title :
Traffic engineering in multi-service networks comparing genetic and simulated annealing optimization techniques
Author :
Pasias, V. ; Karras, D.A. ; Papademetriou, R.C.
Author_Institution :
Chalkis Institute of Technology and Hellenic Open
Abstract :
Three new methods for the solution of the offline traffic engineering. (TE) problem in multi-service networks based on genetic optimisation and simulated annealing optimization techniques are presented and compared. In the first method, the off-line TE problem is formulated as an optimisation model with linear constraints and then solved using the Genetic Algorithm for Numerical Optimisation for Constraint Problems (GENOCOP). In the second method the same problem is solved using simulated annealing. Besides, a third hybrid method for the solution of the aforementioned problem involving GENOCOP and a heuristic TE algorithm is also provided. The performance of the above methods against a standard LP-based optimisation method is examined in terms of two different network topologies and numerical test results are provided. The contribution of the paper lies on the fact that for the first time genetic optimization and simulated annealing methods are involved in traffic engineering problems. In addition, a novel hybrid method based on genetic optimization is proposed with performance comparable to that obtained by linear programming techniques (Simplex), which are the optimum solvers in the case of linear cost functions optimization under linear constraints as it takes place in the herein proposed traffic engineering problem formulations. Finally, the contribution of the paper is that for the first time genetic optimization and simulated annealing techniques are used to solve real world problems of thousands of variables, achieving in the case of genetic algorithms, near optimal results.
Keywords :
IP networks; constraint handling; constraint theory; genetic algorithms; linear programming; quality of service; simulated annealing; telecommunication network topology; telecommunication traffic; LP based optimisation method; constraint problems; genetic algorithms; genetic optimization; heuristic traffic engineering algorithm; linear constraints; linear cost functions; linear programming; multiservice networks; network topology; numerical optimisation; numerical test; offline traffic engineering problem; simulated annealing; Constraint optimization; Genetic algorithms; Genetic engineering; Heuristic algorithms; Network topology; Optimization methods; Simulated annealing; Telecommunication traffic; Tellurium; Traffic control;
Conference_Titel :
Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on
Print_ISBN :
0-7803-8359-1
DOI :
10.1109/IJCNN.2004.1380989