Title :
Using multiple-hypothesis disparity maps and image velocity for 3-D motion estimation
Author :
Demirdjian, D. ; Darrell, T.
Author_Institution :
AI Lab., MIT, Cambridge, MA, USA
Abstract :
In this paper we explore a multiple hypothesis approach to estimating rigid motion from a moving stereo rig. More precisely, we introduce the use of Gaussian mixtures to model correspondence uncertainties for disparity and velocity (optical flow) estimation. We show some properties of the disparity space and show how rigid transformations can be represented. An algorithm derived from standard random sampling-based robust estimators, that efficiently estimates rigid transformations from multi-hypothesis disparity maps and velocity fields is given
Keywords :
motion estimation; stereo image processing; Gaussian mixtures; correspondence uncertainties; disparity maps; motion estimation; moving stereo rig; robust estimators; velocity fields; Artificial intelligence; Computer vision; Equations; Image motion analysis; Laboratories; Motion estimation; Read only memory; Stereo vision; Ultraviolet sources; Uncertainty;
Conference_Titel :
Stereo and Multi-Baseline Vision, 2001. (SMBV 2001). Proceedings. IEEE Workshop on
Conference_Location :
Kauai, HI
Print_ISBN :
0-7695-1327-1
DOI :
10.1109/SMBV.2001.988770