DocumentCode :
232608
Title :
Parameter estimation of sandwich systems with dead zone via modified Kalman filter+
Author :
Yanyan Li ; Yonghong Tan ; Ruili Dong
Author_Institution :
Inst. of Robot. & Autom. Inf. Syst., Nankai Univ., Tianjin, China
fYear :
2014
fDate :
28-30 July 2014
Firstpage :
6710
Lastpage :
6714
Abstract :
An online modelified Kalman filtering (MKF) algorithm for the parameter identification of sandwich systems with dead zone is proposed in this paper. With the switch functions introduced to represent the effect of dead zone, the pseudo-linear model with separated parameters to describe the sandwich system with dead zone is obtained. On account of the modeling residual is the Gaussian white noise sequence, a stochastic state space model is constructed. Then, the MKF algorithm is applied to the estimation of parameters of the model. Afterwards, a simulation example is presented to evaluate the proposed scheme.
Keywords :
Kalman filters; parameter estimation; state-space methods; Gaussian white noise sequence; MKF algorithm; dead zone; modified Kalman filter; parameter estimation; pseudolinear model; sandwich systems; stochastic state space model; Covariance matrices; Educational institutions; Kalman filters; Noise; Parameter estimation; Switches; Identification; dead zone; modified Kalman filter; sandwich system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2014 33rd Chinese
Conference_Location :
Nanjing
Type :
conf
DOI :
10.1109/ChiCC.2014.6896103
Filename :
6896103
Link To Document :
بازگشت