Title :
Cooperative Co-evolution for large scale optimization through more frequent random grouping
Author :
Omidvar, Mohammad Nabi ; Li, Xiaodong ; Yang, Zhenyu ; Yao, Xin
Author_Institution :
Evolutionary Comput. & Machine Learning Group (ECML), RMIT Univ., Melbourne, VIC, Australia
Abstract :
In this paper we propose three techniques to improve the performance of one of the major algorithms for large scale continuous global function optimization. Multilevel Cooperative Co-evolution (MLCC) is based on a Cooperative Co-evolutionary framework and employs a technique called random grouping in order to group interacting variables in one subcomponent. It also uses another technique called adaptive weighting for co-adaptation of subcomponents. We prove that the probability of grouping interacting variables in one subcomponent using random grouping drops significantly as the number of interacting variables increases. This calls for more frequent random grouping of variables. We show how to increase the frequency of random grouping without increasing the number of fitness evaluations. We also show that adaptive weighting is ineffective and in most cases fails to improve the quality of found solution, and hence wastes considerable amount of CPU time by extra evaluations of objective function. Finally we propose a new technique for self-adaptation of the subcomponent sizes in CC. We demonstrate how a substantial improvement can be gained by applying these three techniques.
Keywords :
optimisation; adaptive weighting; fitness evaluations; large scale continuous global function optimization; multilevel cooperative coevolution; random grouping; Computational modeling; Computer science; Electronic mail; Optimization; Probability; Software; Space exploration;
Conference_Titel :
Evolutionary Computation (CEC), 2010 IEEE Congress on
Conference_Location :
Barcelona
Print_ISBN :
978-1-4244-6909-3
DOI :
10.1109/CEC.2010.5586127