DocumentCode :
2329147
Title :
Multivarible Symbolic Regression Based on Gene Expression Programming
Author :
Zhu, Ming-fang ; Zhang, Jian-bin ; Ren, Yan-ling ; Pan, Yu ; Zhu, Guang-ping
Author_Institution :
Sch. of Comput. Eng., Jiangsu Teachers Univ. of Technol., Changzhou, China
Volume :
2
fYear :
2011
fDate :
28-30 Oct. 2011
Firstpage :
298
Lastpage :
301
Abstract :
This paper presents a method for multivarible symbolic regression modeling and predicting. The method based on gene expression programming, a recently proposed evolutionary computation technique. We explain in details the techniques of gene expression programming and multivarible symbolic regression with gene expression programming. Furthermore, we give an example to explain this technique, and experiment results show that the model set up by gene expression programming is better than statisticacal linear regression techniques.
Keywords :
evolutionary computation; regression analysis; evolutionary computation technique; gene expression programming; multivarible symbolic regression modeling; statistiacal linear regression techniques; Biological cells; Computational modeling; Data models; Educational institutions; Gene expression; Programming; autimatic modeling; evolutionary computation; gene expression programming; multiable symbolic regression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Design (ISCID), 2011 Fourth International Symposium on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4577-1085-8
Type :
conf
DOI :
10.1109/ISCID.2011.177
Filename :
6079796
Link To Document :
بازگشت