Title :
Asymmetry-Aware Real-Time Distributed Joint Resource Allocation in IEEE 802.22 WRANs
Author :
Kim, Hyoil ; Shin, Kang G.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA
Abstract :
In IEEE 802.22 Wireless Regional Area Networks (WRANs), each Base Station (BS) solves a complex resource allocation problem of simultaneously determining the channel to reuse, power for adaptive coverage, and Consumer Premise Equipments (CPEs) to associate with, while maximizing the total downstream capacity of CPEs. Although joint power and channel allocation is a classical problem, resource allocation in WRANs faces two unique challenges that has not yet been addressed: (1) the presence of small-scale incumbents such as wireless microphones (WMs), and (2) asymmetric interference patterns between BSs using omnidirectional antennas and CPEs using directional antennas. In this paper, we capture this asymmetry in upstream/downstream communications to propose an accurate and realistic WRAN-WM coexistence model that increases spatial reuse of TV spectrum while protecting small-scale incumbents. Based on the proposed model, we formulate the resource allocation problem as a mixed-integer nonlinear programming (MINLP) which is NP-hard. To solve the problem in real-time, we propose a suboptimal algorithm based on the Genetic Algorithm (GA), and extend the basic GA algorithm to a fully-distributed GA algorithm (dGA) that distributes computational cost over the network and achieves scalability via local cooperation between neighboring BSs. Using extensive simulation, the proposed dGA is shown to perform as good as 99.4-99.8% of the optimal solution, while reducing the computational cost significantly.
Keywords :
channel allocation; distributed algorithms; genetic algorithms; integer programming; nonlinear programming; radio spectrum management; IEEE 802.22 WRAN; NP hard problem; TV spectrum; adaptive coverage; asymmetry aware real time distributed joint resource allocation; base station; channel reuse; consumer premise equipments; genetic algorithm; mixed integer nonlinear programming; spatial reuse; suboptimal algorithm; wireless regional area networks; Base stations; Channel allocation; Computational efficiency; Directional antennas; Directive antennas; Dissolved gas analysis; Interference; Microphones; Resource management; TV;
Conference_Titel :
INFOCOM, 2010 Proceedings IEEE
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4244-5836-3
DOI :
10.1109/INFCOM.2010.5462171