DocumentCode :
2338295
Title :
Inter-Class Distance Based Kernel Parameter Evaluating Method for RBF-SVM
Author :
Xiaoshan, Song ; Xiaoyu, Jiang ; Chongzhao, Han ; Jianhua, Luo
Author_Institution :
Dept. of Control Eng., Acad. of Armored Force Eng., Beijing, China
Volume :
1
fYear :
2010
fDate :
18-20 Dec. 2010
Firstpage :
853
Lastpage :
858
Abstract :
Selecting the optimal parameters of the Support Vector Machines (SVM) is very important in practice. This paper detailedly analyzes the effects given by the Radial Basis Function (RBF) kernel parameter on the feature space, and proposes a novel kernel parameter evaluating method, which is based on the Inter-Class Mean Distance (ICMD). Theoretical and experimental analysis is made on the proposed method. The proposed method makes it possible to select the kernel parameter and the penalty parameter by two stages, which significantly decreases the time cost of the parameters selection. Experiments are made to compare the “two stage” method with the grid search method, results show that the former can select the optimal parameters with greatly shortened time cost.
Keywords :
radial basis function networks; support vector machines; RBF-SVM; inter-class mean distance; kernel parameter evaluating method; radial basis function kernel parameter; support vector machines; Radial Basis Function; Support Vector Machine; kernel parameter evaluating; parameter selection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Digital Manufacturing and Automation (ICDMA), 2010 International Conference on
Conference_Location :
ChangSha
Print_ISBN :
978-0-7695-4286-7
Type :
conf
DOI :
10.1109/ICDMA.2010.160
Filename :
5701292
Link To Document :
بازگشت