DocumentCode :
2340285
Title :
Self-organizing map for reinforcement learning: obstacle-avoidance with Khepera
Author :
Sehad, Samira ; Touzet, Claude
Author_Institution :
LERI-EERIE, Nimes, France
fYear :
1994
fDate :
7-9 Sept. 1994
Firstpage :
420
Lastpage :
423
Abstract :
We present a self-organizing map implementation of the Q-learning algorithm. Our goal is to overcome the problems of reinforcement learning: memory requirement and generalization. We consider the map as an associative memory and we use it for obstacle avoidance with the mobile robot Khepera. Results allow real world applications to be envisaged using neural reinforcement learning.
Keywords :
content-addressable storage; generalisation (artificial intelligence); learning (artificial intelligence); mobile robots; path planning; self-organising feature maps; Khepera mobile robot; Q-learning algorithm; associative memory; generalization; memory requirement; neural reinforcement learning; obstacle avoidance; real world applications; self-organizing map; Classification algorithms; Hamming distance; Intelligent structures; Intelligent systems; Learning; Mobile robots; Neural networks; Neurons; Performance evaluation; Table lookup;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
From Perception to Action Conference, 1994., Proceedings
Print_ISBN :
0-8186-6482-7
Type :
conf
DOI :
10.1109/FPA.1994.636137
Filename :
636137
Link To Document :
بازگشت