DocumentCode :
2341365
Title :
Increasing On-line Classification Performance Using Incremental Classifier Fusion
Author :
Sannen, Davy ; Lughofer, Edwin ; Van Brussel, H.
Author_Institution :
Dept. of Mech. Eng., Katholieke Univ. Leuven, Heverlee, Belgium
fYear :
2009
fDate :
24-26 Sept. 2009
Firstpage :
101
Lastpage :
107
Abstract :
To process the large amounts of data industrial systems are producing nowadays, machine learning techniques have shown their usefulness in many applications. As the amounts of data being generated are getting huge, the need for machine learning methods which can deal with them in an appropriate way - i.e. methods which can be adapted incrementally - becomes very important. Ensembles of classifiers have been shown to be able to improve the predictive accuracy as well as the robustness of single classification methods. In this work novel incremental variants of several well-known classifier fusion methods (Fuzzy Integral, Decision Templates, Dempster-Shafer Combination and Discounted Dempster-Shafer Combination) are presented. Furthermore, a novel incremental classifier fusion method called Incremental Direct Cluster-based fusion will be introduced, which exploits an evolving clustering approach. A flexible and interactive framework for on-line learning will be introduced, in which the ensemble (classifier fusion) methods are adapted incrementally in a sample-wise manner together with their base classifiers. The performance of this framework and the proposed incremental classifiers fusion methods therein are evaluated on five real-world visual quality inspection tasks, captured on-line from an industrial CD imprint production process.
Keywords :
learning (artificial intelligence); pattern classification; sensor fusion; data industrial systems; incremental classifier fusion method; incremental direct cluster-based fusion; industrial CD imprint production process; machine learning techniques; on-line classification performance; visual quality inspection tasks; Adaptive systems; Classification tree analysis; Fusion power generation; Inspection; Intelligent systems; Learning systems; Machine learning; Machinery production industries; Robustness; Voting; Ensemble of classifiers; classifier fusion; incremental learning; on-line visual quality inspection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Adaptive and Intelligent Systems, 2009. ICAIS '09. International Conference on
Conference_Location :
Klagenfurt
Print_ISBN :
978-0-7695-3827-3
Type :
conf
DOI :
10.1109/ICAIS.2009.25
Filename :
5328021
Link To Document :
بازگشت