DocumentCode :
2342725
Title :
Collision detection in legged locomotion using supervised learning
Author :
Doshi, Finale ; Brunskill, Emma ; Shkolnik, Alexander ; Kollar, Thomas ; Rohanimanesh, Khashayar ; Tedrake, Russ ; Roy, Nicholas
Author_Institution :
MIT, Cambridge
fYear :
2007
fDate :
Oct. 29 2007-Nov. 2 2007
Firstpage :
317
Lastpage :
322
Abstract :
We propose a fast approach for detecting collision- free swing-foot trajectories for legged locomotion over extreme terrains. Instead of simulating the swing trajectories and checking for collisions along them, our approach uses machine learning techniques to predict whether a swing trajectory is collision-free. Using a set of local terrain features, we apply supervised learning to train a classifier to predict collisions. Both in simulation and on a real quadruped platform, our results show that our classifiers can improve the accuracy of collision detection compared to a real-time geometric approach without significantly increasing the computation time.
Keywords :
collision avoidance; learning (artificial intelligence); legged locomotion; terrain mapping; collision detection; collision- free swing-foot trajectories; extreme terrains; legged locomotion; machine learning techniques; real-time geometric approach; supervised learning; Foot; Kinematics; Leg; Legged locomotion; Predictive models; Robots; Solid modeling; Supervised learning; Testing; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4244-0912-9
Electronic_ISBN :
978-1-4244-0912-9
Type :
conf
DOI :
10.1109/IROS.2007.4399538
Filename :
4399538
Link To Document :
بازگشت